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Abstract. The cloudy atmospheric boundary layer is a complex, open, dynamical system that is difficult to fully characterize

through observations. Aircraft measurements provide cloud dynamical, thermodynamical, and microphysical properties along

a flightpath, at high spatial/temporal resolution (order 10 m/0.1 s). These data are essentially contiguous “snapshots” in time

of the state of the cloud and its environment. Polar-orbiting satellite-based remote sensing yields snapshots of retrieved cloud

and aerosol properties once or twice a day at spatial scales on the order of 250 m, but these are usually averaged to scales of5

≈ 20 – 100 km to reduce uncertainties. Neither approach tracks a parcel of air in time, a view that would yield more direct

insights into the evolving system. Nevertheless, our long experience with aircraft and satellite-based remote sensing has taught

us much about atmospheric processes, suggesting that one can gain insights into processes from these snapshots. Using mostly

previously published work we present examples of collections of observation snapshots that reveal various degrees of process-

level understanding. We couch the discussion in terms of the concepts of space-time exchange, ergodicity, and process vs.10

observation timescales. It is our hope that this paper will encourage the atmospheric sciences community to explore the value

of these concepts more deeply.

1 Introduction

The atmospheric system, like many other complex, open systems comprises myriad coupled processes, a very large number of

coupled geophysical variables (GVs), and a huge number of degrees of freedom. The atmospheric system is thus notoriously15

unpredictable (e.g., Bauer et al., 2015; Selz et al., 2022). Survival instincts have for millennia driven humans to observe

and record the weather, with ever-increasing levels of sophistication, especially over the past century and a half. Current

observational systems include highly sophisticated surface-based in-situ and remote sensing instruments, aircraft-borne cloud

and aerosol microphysics probes, and passive and active remote sensing systems in space. Aircraft measurements provide

cloud dynamical, thermodynamical, and microphysical properties along a flightpath at high spatial/temporal resolution (order20

10 m/0.1 s). At typical aircraft speeds of 50 - 100 m/s these measurements quickly become spatially de-correlated, which

limits what one can learn about the evolution of a process based on consecutive measurements. Thus these data are essentially

snapshots in time of the state of the cloud and its environment. Satellite-based remote sensing yields snapshots of retrieved

cloud and aerosol properties at spatial scales on the order of 250 m, but these are usually aggregated to scales of ≈ 20 –
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100 km to reduce uncertainties. The aggregation creates further challenges to addressing processes, particularly when process25

timescales are short.

Ideally the study of processes would track the system as it evolves in space and time, i.e. from a Lagrangian rather than

an Eulerian perspective. This is particularly true if one seeks a causal relationship between a perturbation of one variable on

the state of the system, e.g., cloud response to aerosol perturbations. Given the speed of most of our measurement platforms

and the rate of movement of atmospheric systems this generally proves to be challenging. The notion that one can infer time-30

evolving ‘process’ from static ‘snapshots’ can be demonstrated through the question of whether one can learn the rules of

football or chess from infrequent snapshots of the game, and even from different occasions on which the game is being played.

(We will assume that the rules of the game are invariant.) Atmospheric observing systems provide glimpses of the state of the

system on different days, and under different large-scale meteorological conditions. Since cloud systems are highly sensitive to

meteorological conditions this can be viewed as a game in which the rules are changing. Stratification to similar meteorological35

conditions becomes essential but there remains a question of the importance of the history of the evolving system on its way

to the observation point, i.e. stratification might have to be extended to matching air parcel/mass histories. Thus even in a

data-rich world, understanding how best to use data to improve our understanding of the atmosphere requires thought.

Ergodicity is a concept introduced in the late 19th century that has its origins in the study of systems in equilibrium by

the statistical physics community (Boltzmann, 1884). Ergodicity relates to the idea of a system characterized by a motion in40

phase space that, given long enough, fills the entire space. The concept of ergodicity conveys the idea that the average state of

the system can be equally characterized by either the collection of all the system states obtained when following one specific

system over time, or, alternatively, and equivalently, by a suitably sampled collection of individual realizations of the system

at any given time. Consider the challenge of sampling a system of moving gas molecules in a confined volume. One approach

would be to track a single molecule with some temporal frequency – say 1000 times – to understand the mean state of the45

system. Another might be to take an instantaneous snapshot of 1000 spatially separated molecules, well spread out over that

space in the same closed system to deduce these processes. (In reality, for a gas, the number of samples and molecules would

be much larger - on the order of an Avogadro’s number of molecules for the system to be in thermodynamic equilibrium.)

The system is considered ergodic if the mean state of the system based on these two approaches is the same, i.e., if a system

is ergodic, the dynamical description (tracking a single molecule) can be replaced by a much simpler probabilistic view (a50

snapshot of 1000 molecules). Loosely speaking this can be thought of as a (phase-) space-time exchange: the average of the

properties of many spatially separated particles at one time (‘space’) is equivalent to the average of the same properties of one

molecule sampled over many times (‘time’). Newer developments offer that the system does not have to fill the entire space,

and pose the idea of ergodicity weak enough to hold for a given system, and strong enough to have significant consequences

(see e.g., Ashley, 2015). We will not attempt to cover the huge body of literature that has accumulated on various aspects55

of ergodicity; instead we will stick to a much simpler, conceptual level that ties to a sample of questions in the atmospheric

sciences.

A simple example of a system that is ergodic is the rolling of a die: Whether 100 people role a die once, or one person rolls

a die 100 times, the probability of obtaining a given number, say 3, is the same (1/6× 100 = 16.67%). The counter example
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might be that if one person engages in Russian roulette 6 times or six people engage in Russian roulette once (each with their60

own firearm), the outcome will be very different – i.e the system is decidedly non-ergodic.

In a social sciences context one can think of tracking one person 1000 times over a period of interest to study a given

phenomenon vs. sampling 1000 persons at different stages of this same phenomenon but at one point in time (Hunter et al.,

2024). (In this case ‘space’ refers to the separate individuals.) In economic theory the goal is to understand how well expected

values of economic metrics compare with time averages. For example, because economics systems are typically far from steady65

state, an individual investor might question the relevance of the present-day growth of a collection of investment portfolios

(‘space’) to the projected growth of their personal portfolio (‘time’) (e.g., Peters, 2019).

A key component of ergodic systems is that the ‘rules of the game’ need to be the same. Thus the dice used in the above

example cannot be weighted to bias the outcome differently between repeated rolls of the dice. In the social sciences, ergodicity

becomes much harder to achieve because the systems involve people who are not identical and might behave unpredictably –70

i.e., the rules of the game are not uniform across the population. In atmospheric systems, meteorology is a key determinant of

how a system evolves. Meteorological changes thus equate to changes in rules of the game, which depend on the state of the

atmosphere, the particular attributes of the system being studied, and how far they are from steady state.

In addressing the ergodicity of a system, the magnitude of the process timescale of the system process(es) τproc relative to

the observation timescale tobs is a helpful organizing metric. The Deborah number (Reiner, 1964) is defined as75

D =
τproc

tobs
. (1)

If the duration over which the process is observed is long enough to detect the characteristic timescale of the process under

investigation then tobs ≫ τproc and D is small – e.g., a radar tracking a convective storm system over its lifecycle allows one

to study the microphysical processes (minutes) associated with the precipitation generated by the storm over the course of its

lifetime (hours). Systems for which D≫ 1 evolve slowly enough to render them essentially static to the observer. An example80

of the latter is the human observation of geochemical erosion of rocks. For a select process, a D≪ 1 coveys the idea that the

observation time is long enough to allow the system to fully explore its state-space, a necessary (but insufficient) condition for

ergodicity. Conversely, if the observation time is too short for full exploration of the state space then the system is non-ergodic.

Observation timescales in the atmospheric sciences range from minutes to multiple days to decades, depending on the analysis

approach, lifetime of the platform, and perspective. (As will be discussed below, a time snapshot does not necessarily imply an85

observation period approaching zero.) The determination of the Deborah number becomes especially interesting for systems

that feature processes on multiple temporal and spatial scales (Bossen and Mauro, 2024), which translates into various possible

τproc that could be dominating the evolution captured in the data. Clouds with processes that range from the microscale of cloud

microphysics (seconds to minutes) up to the large-scale evolution of cloud-controlling factors (days) are a prime example of

such a multiscale system (Alinaghi et al., 2025a, b).90

A related concept is Taylor’s frozen turbulence hypothesis (Taylor, 1938). If one’s goal is to measure the characteristics

of a turbulent eddy, the only practical way to do so is to place a sensor in the medium and allow the eddies to advect past a

sensor. Taylor’s “frozen” hypothesis assumes that the statistical properties of turbulent eddies do not evolve significantly as they
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advect past the sensor. In other words one assumes that the eddy is close to steady over the observation period, or τproc ≪ tobs.

A space-time exchange follows naturally; e.g., if τproc ≪ tobs then a time-height plot from a vertically pointing radar at a fixed95

ground site can be converted to a distance-height plot using knowledge of the mean wind speed.

Below we explore whether process information can be gleaned from snapshots of cloud systems with a number of examples,

most of which are previously published results from the peer-reviewed literature. We cast results in terms of ergodicity, space-

time exchange, and observation and process timescales that determine the Deborah number. The paper therefore revisits well-

known results in a framework that we believe will benefit the field – both conceptually and practically. We do not weigh in on100

whether our systems are ergodic in the strict sense. We end with a discussion of results and a perspective on implications for

the field of aerosol-cloud-climate interactions.

2 Examples

In a multiscale system, the Deborah number will depend on the timescale of the process of interest τproc as well as the tools

at our disposal to make the observations. As we survey work that has shown some success in space-time exchange, we will105

present examples that study process and observation timescales that fulfill D≪ 1 for a process of interest. We will distinguish

between two main types based on the relative magnitudes of the meteorological timescale τmet, i.e., the timescale at which the

‘rules of the game’ change:

1. Type 1: A single snapshot for which meteorological conditions are essentially constant (invariant ‘rules of the game’);

τproc ≪ tobs ≪ τmet110

2. Type 2: A composite of snapshots for which meteorological conditions vary (variant ‘rules of the game’); τproc ≪ τmet <

tobs.

2.1 Drop effective radius profiling (Type 1)

Cloud drop effective radius (re =
∫

r3 n(r)dr/
∫

r2 n(r) dr, the ratio of the third to the second moments of the drop size

distribution), is an important GV that is strongly tied to the radiative properties of a cloud. re can be retrieved using passive115

radiometry in the near infrared (e.g., Nakajima and King, 1990), but given the nature of passive measurements, and the strong

weighting to cloud-top, it is challenging without hyperspectral measurements to directly profile re over the depth of warm

clouds (King and Vaughan, 2012). These profiles are desirable because they enable inferences on dominant cloud processes

such as condensation or collision-coalescence. Rosenfeld and Lensky (1998) proposed a method to generate Temperature-re

(T-re) profiles by sorting as a function of temperature the re at the tops of individual cumulus clouds within a single satellite120

scene. (Here temperature is a proxy for height since the relationship between the two can be fairly easily established.) In other

words, the authors looked at data from the same time stamp and used the spatial variability within the cloud scene to generate

T-re profiles (Fig. 1). The fundamental idea is that these individual, spatially separated clouds are exemplars of the re profile in

a single local cloud of arbitrary height, provided the meteorology in the field is approximately constant. In essence this means
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that ‘space’ (individual clouds separated from one another) and ‘time’ (temporal evolution of an individual cloud –i.e., process)125

are equivalent.

Ruiz-Columbié (2003) pointed out that the profiling method proposed by Rosenfeld and Lensky (1998) invokes ergodicity

– the first reference we have found to ergodicity in cloud systems. Lensky and Rosenfeld (2006) tested this idea by analyzing

multiple scenes using geostationary satellite retrievals. Individual cloud cells were tracked to study the temporal evolution of

cells. In addition, the standard profiling method as described above, was applied in the different scenes. The authors were then130

able to demonstrate an “exchangeability between time and space”.

Setting aside technical difficulties associated with satellite-based measurements in broken cloud fields, Zhang et al. (2011)

tested the space-time exchange by analyzing the output of large eddy simulation (LES) of shallow trade-wind cumulus clouds

(Xue and Feingold, 2006) assuming no retrieval error. They demonstrated that to a surprising degree of precision, the profile of

re composited from the tops of individual, spatially distributed clouds follows that of individual clouds. This manifestation of135

some level of ergodicity in convective cloud fields is, in our minds, quite profound since it implies an internal self-consistency

of cloud development within a cloud field immersed in an approximately constant thermodynamic state. Over the course of the

day, the clouds influence their environment as they transport moisture and evaporate. Apparently the effect of clouds on their

environment is sufficiently spatially homogeneous such that subsequent cloud fields still obey the space-time exchange for re

profiling.140

To put this example in the perspective of the Deborah number, we interpret tobs not as the instantaneous snapshot in time, but

as the time represented by the evolution of the full suite of clouds in the scene. This includes several cycles of everything from

the smallest nascent clouds through to the deepest, developed clouds, and the small decaying clouds – yielding a tobs on the

order of several hours. As noted above, this self-consistency between cloud-evolution cycles would not hold in the presence of

meteorological gradients across the cloud field (i.e., for tobs > τmet). For example, in the presence of a gradient, cloud A on one145

side of the domain would be growing at a different rate and experiencing different interactions with its environment than cloud

B on the other side of the domain, in which case one would not a priori expect the members of population of clouds to evolve

in the same way. In this way ‘constant meteorology’ equates to ‘constant rules of the game’. The relevant process timescale

τproc is associated with the evolution of an individual cloud or, more specifically, the height increment between the individual

clouds, ordered by height (say 100 m). For typical updrafts on the order of meters per second τproc would be on the order of150

minutes. Together, this results in τproc ≪ tobs ≪ τmet (Type 1). The underlying reasons for the success of re profiling are in

our minds not well understood. Lensky and Rosenfeld (2006) have argued for the “constant renewal of growing cloud tops

with cloud bubbles that replace the cloud tops with fresh cloud matter from below”. Examining a single cloud, Bretherton and

Smolarkiewicz (1989) describe the buoyancy difference between a cloud and its undisturbed surroundings in terms of spreading

gravity waves that rapidly equilibrate the buoyancy gradient via compensating downdrafts. The rate of this equilibration is much155

faster than the entrainment-mixing timescale. These gravity waves are associated with entrainment (detrainment) regions when

the cloud buoyancy relative to the environment is increasing (decreasing) with height. This homogenization of the buoyancy in

the cloud field might explain why cloud bubbles across the cloud field experience similar histories. Moreover, the rapidity of

the equilibration suggests that the re profiling would not be dependent on the detailed nature of the slower entrainment-mixing
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(inhomogeneous vs. homogeneous; Baker et al., 1980). The underlying reasons for the success of re profiling would clearly160

benefit from a deeper investigation.

2.2 Compositing within a single snapshot (Type 1)

The next example derives from modeling studies, although the phenomenon has since been tested through observations. A

recent approach to investigating the nature of complex cloud systems using LES model output is through the creation of

composites of select variables within a snapshot of a single cloud field evolving under steady meteorological conditions.165

Bretherton and Blossey (2017) studied the aggregation of mesoscale patches of higher humidity in shallow cumulus fields.

By compositing the model output based on quartiles of column integrated total water mixing ratio they were able to elucidate

the processes that lead to cloud clustering, in the absence of external forcing of such pattern and even without precipitation

and radiation. The study by Janssens et al. (2022) achieves the same effect as compositing by scale filtering, and highlights the

intrinsic nature of moisture aggregation. A similar analysis for the case of shallow mesoscale overturning circulations (SMOCs)170

was published by Narenpitak et al. (2021). See also Janssens et al. (2022) and George et al. (2023) for additional modeling and

observational perspectives, respectively.

Zhou and Bretherton (2019) applied the methodology to non-precipitating stratocumulus (Sc). We will walk through this

example more carefully to put it into the perspective of the prior example of space-time exchange. Consider a single Sc cloud

scene exhibiting a regular closed-cellular structure. Sample this scene at various points across the domain and sort the columns175

by their total water path (TWP). Then composite these columns, ordering them in bins of TWP. Probe the LES output to obtain

the dimensions of the cell and the flow-field in these TWP bins. Following this procedure reveals a self-sustaining mesoscale

circulation with a horizontal scale of ≈ 20 – 30 km in a boundary layer of ≈ 1 km depth. The circulation is characterized by

a weak updraft at the core and thickest part of the of the Sc. Descending free tropospheric air diverges at cloud top and moves

air along the shallow cloud-top slope from moister regions to drier regions. The circulation is reinforced by the horizontal180

gradient in cloud-top radiative cooling between cell core and edge. Cold, dry air penetrates down into the boundary layer at the

cell edges and convergence of air from the edges towards the cell core completes the circulation. (Fig. 2). Thus, an archetypal

Sc cell, derived from composite sampling of spatially disparate parts of the system fits well with our general understanding

of closed-cellular convection. Being based on a model that resolves the relevant processes, it also lends itself to a deeper

mechanistic understanding of these cells; e.g., when the horizontal gradient in cloud-top radiative cooling between cell core185

and edge is removed, the circulation is weaker (Zhou and Bretherton, 2019).

Here too the success of this approach is, in our minds, profound: Composited variables are used to show the typical behavior

of a system based on percentiles of those variables drawn from non-contiguous parts of the domain. Similar to the case of T-re

profiling, one can successfully use spatially separated ‘fragments’ (percentiles) of the broader cloud field to build the general

characteristics of a Sc cell. Closed-cellular convection is an atmospheric analog of Rayleigh-Bénard convection. Over limited190

domains (order 100 km), boundary conditions such as sea surface temperature and subsidence are approximately constant, as
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is the depth of the boundary layer. Cell aspect ratios are approximately 30:1. Under these homogeneous conditions there is

enough self-consistency within the Sc for a space-time exchange to be useful.

Considering the Deborah number analysis for this case, tobs amounts to the number of stratocumulus cells over the duration

of the simulation, similar to the number of cloud cycles considered in the previous example. Even when restricting simulation195

time to less than an hour to avoid variability within the diurnal cycle, one will still sample several cells, resulting in tobs ∼ hours.

In contrast, the process timescale τproc is related to the eddy turnover time of about 20 min. With τproc ≪ tobs and τmet ≫ tobs

(fixed meteorology) we consider this example as Type 1.

2.3 Autoconversion (Type 2 and Type 1, depending on the methodology)

The initiation of precipitation via collision-coalescence is a topic of great interest to cloud physicists and climate modelers.200

Collision-coalescence is commonly separated into the self-collection of cloud droplets less than about 40 µm in diameter

(‘autoconversion’) and the collection of small cloud droplets by larger raindrops (‘accretion’). Stephens and Haynes (2007)

presented a means to quantify autoconversion timescales using satellite-based passive (visible and infrared wavelengths) and

active (3-mm radar) measurements. These respectively yield cloud optical depth COD, effective radius re, and radar reflectivity

Z (∝
∫

r6n(r)dr, the 6th moment of the drop size distribution n(r)). Central to this idea is that the Moderate Resolution205

Imaging Spectroradiometer (MODIS)-derived COD and re provide information on the cloud droplet mode of the drop size

distribution while the radar-derived Z is highly sensitive to larger drops. The method is facilitated by the relative robustness

in the modal diameter of the cloud droplets, even as the concentration decreases as a result of autoconversion. (Naturally

the system is more complicated if one includes other cloud processes like advection, sedimentation or drop breakup in a

dynamically evolving system.) The framework for the Stephens and Haynes (2007) retrieval is a simple theoretical model of210

the continuous collision-coalescence process (Bowen, 1950), plus an assumption of the collection kernel (Long, 1974). Some

manipulation of the equations yields

P ·h = c1
2
3
ρwre COD Z̄H[Z̄ −Zc], (2)

where P is the collision-coalescence rate, h the column depth over which P is measured, Z̄, a mean cloud-averaged radar

reflectivity, H , the Heaviside function, expressing a sampling of all radar data for which Z̄ > some critical value Zc, and c1 is215

a function of the collection kernel and has units of m−3 s−1. (For details see Stephens and Haynes 2007.)

To demonstrate the approach, the authors used MODIS retrievals of re and COD, together with CloudSat Z̄ to derive all

terms on the right hand side of the equation. Data were collected over oceans between 60N and 60S for June, July, and

August 2006, and importantly were limited to -15 dBZ < Z̄ < 0 dBZ in order to emphasize the initiation of rain formation

via autoconversion. Integrated coalescence rates P ·h [g m−2 s−1] were then plotted as a function of liquid water path LWP220

(∝ re ·COD) [g m−2] such that the ratio of the ordinate to the abscissa represents a timescale for autoconversion. Figure 3

reproduces Figure 3 in Stephens and Haynes (2007) where one sees a rather broad scatter of the points but that the majority

(73%) of the measurements fall between a timescale of 26 min and 3 h.
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This example raises a number of interesting points. In keeping with our theme, it utilizes snapshots of data to infer process

understanding (autoconversion timescales), in this case constrained by a simple model. A question that arises is why the225

process rates are relatively poorly constrained. In part we believe that this is due to the larger number of degrees of freedom

in the system (e.g., a cloud plus a rain mode). Other reasons might include the fact that a column of air might include drops

that have been advected into the column, or that the data sorting (-15 dBZ < Z̄ < 0 dBZ) is not rigorous enough to exclude

accretion; in other words, the data might reflect processes not considered in the simple model. Or even if the data is dominated

by autoconversion, Eq. (2) might be too simple.230

From a measurement perspective, the cloud and rain components from which the autoconversion rate is derived are separated

spatially and temporally because the radar is on a different satellite trailing the re and COD measurements by a few minutes.

The use of multiple GVs derived from different instruments with different view volumes might also be a problem. Moreover,

data from many different cloud scenes are aggregated. These suggest a limit to how well the autoconversion timescale can be

quantified with this approach.235

For this example, the GVs used in the retrieval are sensitive to the full range of drop sizes, with τproc the time it takes for

drops to grow from newly formed droplets to raindrops, i.e., on the order of 15 – 20 minutes. Because the data derive from

many different conditions, the observation timescale tobs is on the order of many days, during which the meteorology changes

(τmet < tobs). We therefore categorize this as Type 2 because the process under consideration (autoconversion) is obscured

by the varying large-scale meteorological conditions. Thus, the uncertainties in the derived timescales are likely a result of240

changing rules of the game as well as because of uncertainties associated with the retrieval methodology. Depending on the

goals of the study and quantification requirements, such analyses may still be useful.

Building on the success of re profiling presented in section 2.1, we consider another approach to quantifying autoconversion

and accretion, this time in the form of process rates. Taking advantage of new passive remote sensing instruments such as the

Research Scanning Polarimeter (RSP; Alexandrov et al., 2015) and the HyperAngular Rainbow Polarimeter (HARP; McBride245

et al., 2024) that provide information on cloud top effective variance νe as well as cloud top re, we explore whether the added

information on cloud-top νe can quantify these collection rates. By definition

νe =
∫

(r − re)2 r2 n(r)dr

r2
e

∫
r2n(r) dr

which reduces to

νe =
∫

r2 n(r)dr
∫

r4 n(r)dr

(
∫

r3n(r) dr)2
− 1.

Some rearrangement yields

r43 =
∫

r4 n(r)dr∫
r3 n(r) dr

= (νe + 1)re,

which is an effective drop size with more weight on higher order moments than re. Since both cloud-top re and cloud-top νe

can be retrieved, we explore whether this higher weighting can provide information on drop collection. First we apply the re

profiling technique to r43 using the same bin microphysics LES output used by Zhang et al. (2011) to demonstrate that cloud250

top measurements of r43 provide very similar profiling capabilities to re (Fig. 4). This means that, ignoring remote sensing
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uncertainties, one can retrieve re(z) as well as r43(z). Next we calculate the collection rates of the drop size distributions

associated with this bin microphysical model output and separate them into autocoversion and accretion rates. Figure 5 a, b

show that autoconversion rates increase robustly with r43 but then begin to level off and decrease at some larger r43. In con-

trast, accretion rates increase steadily with increasing r43, as expected, dominating the collection process once drops become255

sufficiently large (Fig. 5 c, d). Of note is that high values of r43 are not always a strong constraint on autoconversion and

accretion rates because large r43 may derive from low values of liquid water mixing ratio qc co-occurring with low values of

N . Nevertheless the self-consistency exhibited by shallow cumulus convection – at least in terms of the manifestation of how

ratios between moments evolve – provides insights beyond the retrieval of GVs themselves. The uncertainties are large, but

typical of those associated with modeling (e.g., Khairoutdinov and Kogan, 2000). Whether this approach is useful will require260

more rigorous testing for a broad range of conditions.

As in the case of the T-re profiling this approach can be considered Type 1 since τmet is infinitely large (it is constant across

the scene of interest), τproc is on the order of 15-20 minutes, and tobs is on the order of hours.

2.4 Liquid water path – Drop concentration relationships (Type 2 or Type 1 depending on the methodology)

LWP and drop concentration (N ) are GVs that characterize the bulk properties and microphysical structure of a cloud system265

and are central to aerosol-cloud interactions. Much has been written on the influence of aerosol particles on N , and the resultant

effects on cloud albedo Ac, as well as LWP and cloud fraction fc. Twomey (1977) considered aerosol effects on Ac without

the complications of adjustments to LWP and fc but more recently these adjustments have been shown to be critical to the

evaluation of aerosol-cloud-climate forcing (Bellouin et al., 2020). A satellite-based view of a very large number of snapshots

of cloud systems in LWP-N space exhibits an interesting separation into two branches (e.g., Gryspeerdt et al., 2019), often270

referred to as an “inverted V” (Fig. 6a). These have been interpreted as the low N , precipitating branch 1 where LWP increases

with N as a result of precipitation suppression and the high N , non-precipitating branch 2 where LWP decreases with N as

a result of aerosol-related enhancement in droplet evaporation. Note that the interpretation of these diagrams presupposes a

relationship between state-space sampling and processes, which is not a priori justified. Nevertheless these arguments are not

without merit given our understanding of aerosol-cloud interactions in detailed (typically single case) large eddy simulations275

(LES). For example, Xue et al. (2008) showed a similar inverted V in fc -N diagrams, and the role of N -dependent droplet

evaporation has been elucidated by Wang et al. (2003), Ackerman et al. (2004), and Bretherton et al. (2007).

But can we strengthen this intuition that a compilation of snapshots does indeed inform us about processes? Glassmeier

et al. (2019) and Glassmeier et al. (2021) analyzed large ensembles (order 130) of LES to explore the evolution of cloud

systems covering a large range of boundary layer temperature and water vapor profiles. The output of these nocturnal LES in280

LWP-N space shows a remarkable convergence of cloud systems towards a steady-state line that also exhibits an inverted V

shape and is qualitatively similar to the satellite snapshots. Hoffmann et al. (2020) examined the same large ensemble of LES

to address the extent to which the LWP-N diagram represents physical processes captured by the LES. By applying mixed

layer theory to the individual LES the authors showed a breakdown of LWP tendencies (dLWP/dt) due to radiation, surface
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fluxes, evaporation, precipitation, and cloud top motion. The topographical maps in LWP-N space show the clear dominance of285

individual processes in the very regions that they are expected (Fig. 6b). Evidence for process understanding from inverted Vs

can also be found in Zhou et al. (2025) where lead-lag analysis is applied to satellite data to help establish causal relationships

between N and LWP or LWP and N . Of note is that during the daytime, solar heating has been shown to have a flattening

effect on the negative LWP-N slope using large ensembles of diurnal LES (Zhang et al., 2024; Chen et al., 2024b).

The view based on the synthesis of these large ensembles of LES has recently been augmented by a heuristic model based290

on equations representing basic microphysical processes such as evaporation and collision-coalescence, and thermodynamical

cloud water recharge (Hoffmann et al., 2024). The model also generates inverted Vs and explores the model parameters that

change the slopes of the two branches and how these relationships are affected by stochastic perturbations. By varying the

timescale τprt and thus importance of these perturbations, the heuristic model clarifies the role of different internal processes

(Fig. 7). For infrequent perturbations (Fig. 7, b), the evolution remains dominated by the deterministic mesoscale processes as295

discussed above. Here τproc is a mesoscale timescale of about 10 h, which is≪ tobs (multiple days in these simulations) such that

D≪ 1, enabling the long-time evolution of the stochastic system to ergodically explore its steady state. This ergodicity implies

that snapshots would equally sample this steady state and as the steady state is characterized by balancing processes, this in

turn implies a tight relationship between processes and snapshots. For the most frequent perturbations (Fig. 7, c), however, the

stochastic component of the evolution might dominate, resulting in τproc = τprt ≪ tobs. In this situation, the sampling reflects the300

stochastic external forcing rather than the internal processes of the mesoscale evolution of the cloud field. We still have D≪ 1

and a relationship between snapshot and process but the dominant process is the stochastic perturbation. The heuristic model

also explores the effect of external variability and shows that the shape and position of the inverted V changes with the large-

scale conditions. Such external variability blurs the relationship between snapshots and mesoscale cloud processes, similar to

the effect of stochastic perturbations. The effect of the external variability can be interpreted as variability in meteorological305

conditions in aggregated satellite-based LWP-N data, suggesting that a composite based on many different meteorological

conditions will be associated with uncertain slopes.

Against this conceptual background, we classify LWP-N analysis as performed by Gryspeerdt et al. (2019) as Type 2 for the

following reasons: τproc is on the order of 10 h (Chen et al., 2024a), and the compositing of large numbers of satellite snapshots

means that τproc ≪ tobs (order many days), meeting the requirement that D≪ 1. However with tobs > τmet, meteorological310

variability will limit the ability of this type of analysis to quantify cloud processes.

Goren et al. (2025) go so far as to argue, that cloud-field processes are completely dominated by large-scale processes, i.e.,

τproc = τmet amounts to the timescale of large-scale evolution. In this case the inverted V is simply a consequence of a spatial

change in cloud depth as one follows the prevailing winds off the coast of a Sc-capped area out over warmer waters, together

with aerosol-meteorological co-variability. Initially the boundary layer is shallow and characterized by high N because of315

proximity to continental aerosol sources. As one moves southwestward over the warmer ocean, the boundary layer deepens,

allowing for higher LWP. At the same time, N decreases because of increasing distance from aerosol sources. This describes

the negative LWP-N branch. At some point clouds become thick enough to precipitate, which decreases N – thus defining the

positive branch. To calculate the Deborah number from the perspective of Goren et al. (2025) analysis, τproc is on the order of
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days and, as a result of compositing, tobs is many days. Again, meteorological variability obscures the process (tobs > τmet) and320

we classify this analysis as Type 2.

Zhang et al. (2022) and Zhang and Feingold (2023) offered an alternative by analyzing LWP-N at a 20 km footprint-

level within 1o × 1o boxes under approximately constant meteorological conditions. In this case quantitative information on

microphysical processes is likely more reliable (tobs ≪ τmet; Type 1).

The analysis of Goren et al. (2025) relates slopes to boundary layer processes as opposed to the microphysical process view325

of Gryspeerdt et al. (2019) or Zhang and Feingold (2023). Both are valid and both suggest a connection between snapshot

and process. The study by Possner et al. (2020) might be considered an attempt to disentangle the two contributions by con-

trolling for boundary-layer depth. Thus the interpretation of inverted Vs requires thorough reflection on the processes that are

included/resolved by the temporal observation timescale.

2.5 Snapshots plus reanalysis (Type 1)330

A variation on the examples of a snapshot that yields information on the cloud field is an approach that combines multiple

snapshots with meteorological reanalysis data to study temporally-evolving systems, thus more directly addressing causality.

(The study of Goren et al. (2025) discussed above falls into this category.) Gryspeerdt et al. (2021) used thousands of MODIS

snapshots from the Aqua satellite, reanalysis wind fields, and ship emission information to assess the temporal evolution

of cloud responses to ship emissions. The use of satellite snapshots to unveil the temporal dimension in cloud adjustment335

provides a better sense of process, especially given the multi-hour timescale associated with LWP and fc adjustments to

aerosol perturbations. More recently Murray-Watson et al. (2023) studied cold-air outbreaks at higher latitudes by spatially

and temporally matching wind trajectories based on reanalysis-derived meteorological fields with MODIS retrievals of cloud

properties. While the use of reanalysis data in these examples is helpful, the methodology still relies on compositing, which

inevitably increases tobs to multiple days, meaning that meteorological confounders cannot be avoided.340

Zhang et al. (2025a) took a pseudo-Lagrangian approach to studying cloud systems that uses the GOES-16 geostationary

satellite retrievals of re and COD (and derived LWP) but avoids compositing. We show here one example that exemplifies this

technique. A single GOES snapshot of a cold-air outbreak with a resolution of ∼3 km over the western North Atlantic Ocean

is the start point. 1000 hPa winds from ERA-5 reanalysis at the snapshot time are used to generate instantaneous trajectories,

along which GOES cloud micro- and macro-physical retrievals are extracted. In contrast to conventional Lagrangian tracking345

of cloud evolution in a series of geostationary satellite images, this instantaneous trajectory approach invokes ‘space-time

exchange’ and allows one to infer time-evolving microphysical and boundary layer processes in one single GOES snapshot.

Here the justification for the ‘space-time exchange’ is that the large-scale meteorological conditions are evolving much more

slowly than the rate of cloud evolution, i.e., the timescale of changes in the ‘rules of the game’ is much larger than the

timescale of target processes. In this case the dominant timescale of variability is that of cloud evolution, which is often the350

case for marine cold-air outbreaks. A plot of LWP vs. N shows a trace that contains valuable information about the underlying

boundary layer and microphysical processes along the trajectory (Fig. 8). Figure 8 also shows a diagram that identifies the
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effect that processes have on the directionality of the trace. These include microphysical processes that are strongly influenced

by the large-scale forcing, e.g., the SST gradient: (i) drop activation – increases in LWP and N (arrow 1); (ii) condensational

growth – an increase in LWP at constant N (arrow 2); (iii) collision-coalescence – a decrease in N at constant LWP (arrow355

3); (iv) precipitation and evaporation – a sink for N and LWP (arrow 4); and (v) entrainment-mixing – a reduction in N and

LWP, with directionality depending on whether the mixing is homogeneous or inhomogeneous (arrows 5.1 and 5.2). While

the approach does not provide an unambiguous parsing of processes, it does provide process fingerprinting over the spatial

dimension of a snapshot and demonstrates the usefulness of space-time exchange in process inference.

Considering the Deborah number for this example, an instantaneous trajectory spans more than 10 degrees, equivalent to360

an tobs of ∼12 hours for a boundary layer wind-speed of 20 m s −1. This allows one to consider both microphysical processes

(τproc ∼minutes) and boundary layer deepening processes (τproc ∼ hours).D is less than 1 for both of these process timescales.

On the other hand, the rate of change in SST spatial gradient is on the order of days and thus not ergodically sampled such that

variability is dominated by cloud processes. Thus, this example is considered as Type 1.

3 Discussion365

We now discuss a number of topics that emerge from the examples shown above.

3.1 Gleaning causality from state-space diagrams

The sampling of one system at multiple times is the case study/timeseries approach that is frequently applied in the atmo-

spheric sciences. The reason for its popularity may be historical since it can be accomplished with fewer resources. Based on

a case study – either modeling or observations – one might show a clear relationship between Y and X, e.g., the deepening370

of clouds (Y) in response to an aerosol perturbation (X). With time, such responses tend to become the cornerstones of our

understanding, but often without sufficient focus on the fact that the result derives from one case. The case study approach

stands in contrast to the use of large samples of data that attempts to generalize the results for a wide range of conditions.

The development of networks of surface observations, satellite-based remote sensing, and regional models has pushed the field

towards generalization. For the aerosol-cloud deepening example given above, sampling many cases under different conditions375

provides generality in terms of responses but makes it far more difficult to attribute the deepening to aerosol. The large data sets

or model ensembles contain many different meteorological conditions that might themselves be driving the deepening, with

aerosol manifesting as a confounding factor. Some have argued for more focus on understanding the co-variabilities between

system variables – an approach that seeks to expose the confounders (Mülmenstädt and Feingold, 2018). Others stratify the

large data sets by the variables considered most likely to explain the response, hoping that the stratification is fine enough to380

be sure that results are robust. Machine learning is also proving useful as a means of teasing out counterfactual conditions (see

e.g., Zhang et al., 2025b; Chen et al., 2022, — would these clouds have changed in response to a perturbation had the meteoro-

logical conditions been the same?). As discussed elsewhere (e.g., Harte, 2002; Feingold et al., 2016), an iterative consideration

of the time-oriented (case study) and (phase-)space-oriented (attempt to generalize) approaches is essential to solidifying our

12

https://doi.org/10.5194/egusphere-2025-1869
Preprint. Discussion started: 13 May 2025
c© Author(s) 2025. CC BY 4.0 License.



understanding. Ergodic thinking and space-time exchange therefore lies at the interface of the case-study/generalization inter-385

face.

3.2 The geostationary satellite view

With the new generation of geostationary satellites that produce time derivatives of GVs from advanced imagers and radiome-

ters, it can be argued that we can observe processes more directly, e.g., (Christensen et al., 2020), so why focus on snapshot

data? The program of record comprises a wealth of relatively untapped atmospheric data from polar orbiting satellites that can390

be mined for insights. Aircraft data also fall into this category. Exploring ways to maximize the information content of these

data is therefore worthwhile.

While Type 1 data applications don’t necessarily require geostationary satellite data, more frequent snapshots of the same

scene provide the opportunity to compare geostationary retrievals of the evolving cloud state with inferences about processes

based on polar orbiting satellite retrievals, albeit based on instruments with different data characteristics, resolution, and preci-395

sion. In principle this could be a more rigorous test of the space-time exchange.

The geostationary point of view might be especially valuable when accompanied by knowledge of the meteorology (e.g.,

from reanalysis). For example, the study of aerosol-cloud interactions would be able to discern temporal changes in cloud

fields in response to aerosol perturbations (response time on the order of 10 minutes) as well as adjustments in LWP and cloud

fraction that have timescales on the order of 10 h (Chen et al., 2024a; Glassmeier et al., 2021) – within the context of the400

evolving meteorology. At high solar zenith angles (SZA) retrievals are more problematic but events that lie within the optimal

SZA window (less than 65o; Grosvenor et al., 2018) will be valuable. As already noted, extant studies have utilized composites

of satellite snapshots to construct temporal evolutions of aerosol-cloud interactions in ship-tracks (Gryspeerdt et al., 2021). By

enabling higher resolution temporally contiguous observations of a given cloud process, the geostationary view should provide

more confidence in the causal nature of the process.405

4 Summary and Outlook

In an era of increasingly large volumes of atmospherically-relevant data, we have addressed the question of how much one

can learn about atmospheric processes from infrequent snapshots of the state of the system. It is common in the atmospheric

sciences to aggregate large samples of instantaneous ‘snapshots’ of data – usually in the form of geophysical variables (GVs) –

and attempt to infer knowledge of the underlying processes that produce relationships between the GVs. To quote Mülmenstädt410

and Feingold (2018) “..temporally evolving system[s] with an inherent memory [are] studied with a Markovian, ‘snapshot- in-

time’ methodology, which assumes that processes are related to the current state of the system, and have no memory of past

states.” In doing so we inherently assume causal relationships between these variables and ignore the spatiotemporal unfolding

of the system with its inherent timescales. Here we have attempted to provide some perspectives on this approach through the

use of commonly applied GV state diagrams. The framework for discussion is the statistical physics concept of ergodicity,415

which we apply ad hoc rather than adhering to its manifold and more rigorous definitions.

13

https://doi.org/10.5194/egusphere-2025-1869
Preprint. Discussion started: 13 May 2025
c© Author(s) 2025. CC BY 4.0 License.



A central concept of ergodicity is the exchange of ‘space’ and ‘time’. For example, one may attempt to relate a snapshot of

spatially separated parts of a system (‘space’) to the temporal evolution of a part of that system (‘time’) and in so doing infer

knowledge of ‘process’, which is inherently causal. Aircraft in-situ measurements and satellite-based remote sensing retrievals

tend to be used in this way since there is no way to track the evolution of the relevant (process-dependent) small volumes of the420

atmosphere with time. (An exception in recent times is the use of geostationary satellite systems with their new and improved

GV retrieval capabilities.) Missions such as the A-Train of satellites (Stephens et al., 2018) were conceived to provide statistics

of the state of the system through retrievals of GVs. The temptation to equate statistical correlation with causation is at the heart

of this paper and the existence of huge volumes of high quality data does not obviate the need for a deeper look at methodology.

The examples shown here point to some of the opportunities and limitations of the use of snapshots beyond a broad statistical425

analysis of geophysical variable space. They serve to demonstrate examples of whether and which processes (cloud scale or

large scale) one might infer from snapshots within the (here) loosely defined framework of ergodicity and space-time exchange

and with the added perspective of Deborah number analysis. We have deliberately avoided detailed discussion or rigorous

adherence to the many aspects of ergodicity and instead focused on its chief derivative, space-time exchange, as applied to

real-world studies of atmospheric systems. The Deborah number (D = (process timescale) / (observation period)) is a useful430

way of quantifying whether the observation period is long enough for the system to have fully explored its state space with

respect to a certain process scale.

Our examples have been characterized into two distinct types of data categories, the primary difference being the relative

magnitude of the observation period and the timescale of meteorological variability:

1. Type 1: D≪ 1, τproc ≪ tobs ≪ τmet. ‘Space’ is associated with different and separated cloud elements within the same435

scene and ‘time’ is associated with the evolution of a single cloud element. The two examples that seem to show the

most promise are the profiling of re in cumulus and the compositing of closed cellular stratocumulus. In both of these

examples, spatially separated parts of the cloud field are composited in ways that allow the evolution of an individual

component to be analyzed. The ability to constrain meteorology such that a cloud process and its timescale dominate

variability in the data is likely key to the success of this approach.440

2. Type 2: D≪ 1, τproc ≪ τmet < tobs. The large composites of data associated with Type 2, including climatological stud-

ies, translate to the inclusion of a large range of meteorological conditions, or changing ‘rules of the game’. Examples

are autoconversion of cloud droplets to rain (Stephens and Haynes, 2007) and LWP-N analyses after Gryspeerdt et al.

(2019). The changing meteorology likely limits our ability to quantify autoconversion timescales and the slopes of the

inverted V in the LWP, N analyses. Careful stratification of the data by similar conditions might help to improve quan-445

tification (e.g., Zhang et al., 2022).

An interesting case is the LWP-N state-space since both Type 1 and Type 2 classification has been arrived at. Hoffmann

et al. (2024) used a heuristic model that considers simple equations for microphysical processes such as evaporation, collision-

coalescence, and rain formation, as well as thermodynamic cloud-water recharge and entrainment to show that inverted V

shapes emerge quite naturally. For fixed meteorology (no perturbations), the timescale analysis suggests Type 1. On the other450
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hand, Goren et al. (2025) considered LWP-N in a Lagrangian sense; they composited trajectories as they move away from

the west coasts of continents and transition from closed-cell stratocumulus to broken cumulus to precipitating conditions, and

showed that they also manifest inverted Vs. In this view, the inverted V is described as driven primarily by meteorology and

co-variability of meteorology with aerosol. The timescale analysis indicates Type 2 as a result of the compositing of the data.

Both views hold merit since different processes and timescales are being targeted.455

The use of additional information afforded by meteorological reanalysis is an interesting variation on the ‘process-from-

snapshot’ efforts. The analysis of LWP-N evolution in cold air outbreaks (section 2.5) is an example of how ancillary meteoro-

logical data describing a trajectory through such a system can be used together with LWP and N retrievals to glean information

on both boundary layer and microphysical processes. The success of this example rests on the fact that the cold-air outbreak

event changes much more slowly than the winds advected through the scene. The approach is similar to Gryspeerdt et al.460

(2021), and Murray-Watson et al. (2023) in that boundary layer winds are used to advect the system, but is fundamentally dif-

ferent in that that our proposed approach uses a single snapshot instead of a large composite, thus avoiding the meteorological

confounders.

While most of the results presented here derive directly from previously published work, an extension of the T-re profiling

proposed by Rosenfeld and Lensky (1998) has been explored. We have shown that similar to the usefulness of re profiling465

demonstrated by measuring re at the tops of spatially separated clouds in the cloud field, new remote measurements of cloud

top drop spectral variance ν might allow one to retrieve both re and r43 (the ratio between 4th and 3rd moments of the drop

size distribution). The latter is shown here to have the potential to provide useful constraints on autoconversion and collection

rates.

In closing, we hope that exploring the concept or ergodicity, or its more accessible ‘space-time exchange’ will lead to better470

understanding of how snapshot data (and large collections thereof) are useful for inferring process understanding. By examining

the ratio of process timescales to the duration of observation, the Deborah number provides a useful way to quantify how well

a system can explore its state space over the period of observation for a given process, and the extent to which meteorology

might confound quantification by changing the rules of the game.

We proffer that strict definitions of ergodicity may not be necessary for snapshots to be useful for understanding processes but475

encourage the community to dig much deeper into ergodicity in atmospheric systems – as has occurred in the fields of statistical

physics, economics, and social sciences. When doing so, a primary concern should be the extent to which the physical drivers

(e.g., meteorology and aerosol) or the ‘rules of the game’ are consistent. Thus we advocate for targeting processes that are

conducive to full sampling of the state space for selected observational periods, avoiding compositing of data derived from

different meteorological conditions. Finally, we note that while in-situ measurements and remote sensing retrievals continue to480

improve, practical limitations may get in the way, e.g., our ability to retrieve remotely re in small, broken clouds. Challenges

posed by retrievals should not prevent us from refining our conceptual thinking of how to derive better understanding from

large data sets.
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Fig. 1. re profiles of cloud population in the last 4 h of simulation in the polluted (Na = 2000mg�1), intermediate (Na = 100mg�1), and
clean (Na = 25mg�1) cases. (a, b, c) re profiles from all cloud samples. (d, e, f) Constructed re profiles using cloud-top re. Different colors
represent different percentiles. (Orange: 40–60 percentiles; yellow: 30–40, 60–70 percentiles; green: 20–30, 70–80 percentiles; cyan: 10–20,
80–90 percentiles; blue: 0–10, 90–100 percentiles.) Notice that data points are few near cloud top so that only blue is used to represent 0-100
percentiles. The drizzle mode drops (larger than 50 microns) in clouds and below cloud base are not shown in the clean case for clarity. The
50th percentile of the re from all cloud samples in each case are shown for reference (black lines).

samples is also shown as a reference (black lines). The con-
structed re profiles have similar properties to the re profiles
from all cloud samples, although with a low bias (as can be
seen from the median re in the constructed re profile com-
pared to the 50th percentile of re from all cloud samples in
each case). This bias is about 0.5 µm (⇠10%) in the pol-
luted case, 1 µm (⇠10%) in the intermediate case, and 2 µm
(⇠10%) in the clean case. The constructed re does represent
the in-cloud re in the polluted and intermediate cases fairly
well, with a low bias (⇠10%), providing evidence that the
cloud-top re from satellite measurements can generally be
used for profiling re. Therefore the method used in Rosen-
feld and Lensky (1998) is validated in this study for shallow
cumulus. For precipitating clouds, the significant variability
suggests that cloud-top re from satellite measurements may
be unreliable.

As expected, both the re profiles from all cloud sam-
ples and the constructed re profiles in Fig. 1 indicate that
re becomes larger when aerosol mixing ratio changes from
2000mg�1, to 100mg�1, and to 25mg�1 (Twomey, 1974).
Results indicate that re variability in the polluted and inter-
mediate cases is relatively small compared to the aerosol ef-
fects on re. Although re variability in the clean case is large,

the three cases still show distinct differences in re for the rela-
tively large range in aerosol conditions considered here. Suc-
cessfully distinguishing the differences in re between clean
and polluted air masses using satellite retrievals or other mea-
surements will depend on the existing aerosol gradient and
the accuracy of the remote re retrieval.
Figure 2 shows the constructed re profiles using different

measures of cloud-top re. Results using the re at one grid
point below the highest grid that has ql > 0.01 g kg�1 are
shown in Fig. 2a–c. The constructed re profiles closely rep-
resent the in-cloud re, especially in the polluted and interme-
diate cases. Figure 2d–f presents constructed re profiles with
the maximum re in each column. The re profiles constructed
in this way have a high bias (⇠5%) compared to the in-cloud
re. Therefore, the constructed re profiles show progressively
larger re when using the following measures of cloud-top re:
(1) re at the highest grid point with ql> 0.01 g kg�1; (2) re at
one grid point below the highest grid with ql > 0.01 g kg�1;
and (3) the maximum re in the column. In addition, the con-
structed re profiles using different measures of cloud-top re
still show the aerosol effects on re and the distinction be-
tween clean, intermediate, and polluted conditions, similar
to results in Fig. 1.

Atmos. Chem. Phys., 11, 4633–4644, 2011 www.atmos-chem-phys.net/11/4633/2011/
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Figure 1. (a) Schematic of the Rosenfeld and Lensky (1998) method of profiling of drop effective radius re (T-re); (b) The cloud top re of

individual clouds in the scene are composited to form a T-re profile; (c) Testing of the method using LES output of shallow cumulus clouds.

Solid line: domain-mean profile of re; colored contours: re based on individual cloud tops. Colors indicate percentiles. Reproduced from

Fig. 1e in Zhang et al. (2011), courtesy of ACP.
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Figure 2. Schematic describing the processes associated with a typical stratocumulus cell. The schematic is based on the compositing of

spatially separated parts of cells in a LES-generated cloud field. (Fig. 15 in Zhou and Bretherton (2019), courtesy of Wiley.)

22

https://doi.org/10.5194/egusphere-2025-1869
Preprint. Discussion started: 13 May 2025
c© Author(s) 2025. CC BY 4.0 License.



time scale (t). The majority of the observations (73% of all
cases) fall between the lower threshold line and the dotted
line drawn though the middle of the data. The time scales
characterizing this majority of data range between about 26
minutes to 3.0 hours.

5. Summary

[13] This paper outlines a new approach that makes use
of new global observations from CloudSat and the A-Train
[e.g., Stephens et al., 2002] to estimate the coalescence rate
of water to rain. The approach makes use of the differing
sensitivity of the passive measurements of reflected sunlight
from MODIS and the cloud radar measurements of Cloud-
Sat to the sizes of cloud water particles in low, warm clouds.
Three pieces of information are used: (1) the reflectivity
profiles from the Cloud Profiling Radar from which the
mean layer reflectivity (!Z) is determined and reflectivity
thresholds are used to identify only the lightest of drizzle,
(2) MODIS cloud optical depth and effective radius
matched to the CPR footprint from which cloud liquid
water path is deduced, and (3) the precipitation incidence
and intensity derived from the measured CPR attenuation as
a further screen of any heavy precipitation.
[14] The time-scale of the rate of coalescence inferred

from this analysis is shown to be directly proportional to the
mean layer reflectivity !Z, and from the data collected over
global oceans it is revealed that the coalescence process
occurs over a range of time-scales that typically vary from
about 26 minutes to 3.0 hours.
[15] A number of assumptions were made to produce the

results shown. The key assumption is that the droplet liquid
water content and related visible extinction properties
largely derive from a smaller droplet mode whereas the
collecting droplets, the drizzle flux and the radar reflectivity

follow a larger mode. This assumption is reasonable and is
supported by many past observations of cloud particle
properties as well as the results of Figure 2. We also make
assumptions about the range of W-band radar reflectivity
over which the incipient stages of drizzle occur drawing
from past observations of drizzle. More observations of
drizzle and validation of drizzle rain rate from CloudSat are
required to explore these assumptions further. We also have
to assume that the incipient drizzle process is occurring by
drops of radius <50 mm and the affect of such assumptions
requires closer scrutiny. An extension of the approach
described in this paper to larger drizzle droplets is currently
being pursued. The issue of spatial variability of drizzle
within the field of view of the sensors and how this might
affect the results also warrants analysis.
[16] Despite the various assumptions that underly the

study, the data now available from the combination of A-
Train sensors and the method described in this paper to
analyze them underscores the vast potential of these obser-
vations for entirely new ways of examining the warm rain
process over a much broader context than has been previ-
ously possible. Global scale views of this process provide
the opportunity for examining how other environmental
factors (like aerosol) might influence the development of
warm rain in the atmosphere and thus offer insights into
how these influences might eventually be included into
global-scale models.

[17] Acknowledgments. Aspects of this work have been supported
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Figure 3. The rate of precipitation water production from
the coalescence process inferred from CloudSat radar and
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observations and the dashed lines provide context for
interpreting the results in the form of a time-scale of the
conversion process (refer to text). 73% of all data fall
between the dotted line and the lower threshold depicted by
the lower dashed line.
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Figure 3. Autoconversion timescales (τ ) based on satellite-based radar and spectrometer data using Eq. (2). Autoconversion timescales

derived from the slope of Eq. (2) vary between 5.6 min and 3 h, with 73% of data between 26 min and 3 h. (From Stephens and Haynes

(2007) Fig. 3, courtesy of Wiley, with permission.)
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Figure 4. Profiling of r43 – the ratio of the 4th to the 3rd moments of the drop-size distribution – following the method of Rosenfeld and

Lensky (1998). Data points are derived from the tops of individual clouds within a field of cumulus using the LES output in Zhang et al.

(2011). The solid line represents the mean profile based on all clouds in the field.
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Figure 5. (a) and (b) autoconversion rates and (c) and (d) accretion rates as a function of r43 color-coded by liquid water mixing ratio qc (a

and c) and drop concentration N (b and e). Note how autoconversion rates decrease for r43 > 20 µm while accretion rates continue to rise.

The relatively low values of autoconversion and accretion rates at high r43 can be seen to be associated with co-occurrence of low qc and

low N .
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Figure 6. (a) Example of an LWP vs. N analysis based on MODIS data demonstrating an inverted V (Gryspeerdt et al. (2019), courtesy

ACP). The positive and negative slopes are associated with precipitation suppression and evaporation feedbacks, respectively. The slopes

associated with the inverted V (blue lines) are given as ml and mh. The yellow line is a best fit line to all the data while the thick black line

indicates an re of 15 µm; (b) Connecting inverted Vs to processes. The figure shows LWP tendencies based on analysis of a large ensemble of

LES. Blue regions indicate losses associated with precipitation and evaporation while the prominent red region is associated with very weak

precipitation evaporating just below cloud based strengthening updrafts. (Adapted from Hoffmann et al. (2020), courtesy of the American

Meteorological Society, with permission.); (c) LWP-N analyses of the stratocumulus-to-cumulus transition after Goren et al. (2025, courtesy

ACP) suggesting that inverted Vs are a consequence of large-scale boundary layer processes and co-variability of meteorology and aerosol.

See text for further discussion. 26
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Figure S3. Joint L-N histograms (opaque colors) and mean ln(L) (thick black line) for perturbations in L and N for ⌧prt = 10h, �prt = 1.0
with (a) mprt = �1, (b) 0.0, and (c) 1.0. Plots are overlayed with m1,l = 0.24 and m1,h = �0.64 (blue and red lines), and the 14µm
cloud top effective droplet radius (black dashed line). Note that the histograms are normalized such that the integral over each N column
yields 1 (cf. Gryspeerdt et al., 2019). Panel (d) shows the fitted slopes ml (blue lines) and mh (red lines) for �prt = 0.5 (thin lines), 1.0
(medium lines), 2.0 (thick lines), and mprt = �1.0 (dashed lines), 0.0 (continuous lines), 1.0 (dashdotted lines).

4

Figure 7. Heuristic model output exploring the effect of microphysical processes and LWP recharge on LWP vs. N ; (a) multiple trajectories

for different initial conditions converging to an inverted V (thin grey lines). Blue and red lines are based on the LES output of Glassmeier

et al. (2021). The dashed line indicates an re of 14 µm; (b) as in (a) but with long timescale external perturbations (Type 1) that still reproduce

the essence of results in (a); (c) as in (b) but with short timescale external perturbations that significantly disrupt the shape of the inverted V

(Type 2). In panels (b) and (c) the color shading reflects all the model output while the thick black line represents the mean. All panels derive

from Hoffmann et al. (2024, courtesy ACP), with details furnished therein.
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Figure 8. Analysis of a cold air outbreak demonstrating the ability to infer processes from GOES retrievals in a single satellite image together

with information on the airflow through the image from ERA-5 reanalysis. (a) Snapshot of a cold-air outbreak scene sampled by GOES with

superimposed instantaneous trajectories based on ERA-5 reanalysis; (b) Trace of the family of instantaneous trajectories through the scene

in LWP-N space; (c) A diagram identifying how individual processes drive the system in LWP-N space (1. activation, 2. condensation, 3.

collision-coalescence, 4. precipitation, 5. entrainment (5.1: homogeneous, 5.2: inhomogeneous)
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